New Fish Collision Model for Tidal Power Industry

HR Wallingford has reportedly developed a sophisticated fish collision model for the tidal power industry which predicts collision rates more accurately than ever before by incorporating the real swimming behaviours of different species of fish for the first time.

A new study by HR Wallingford has been used to predict how many silver eels will hit tidal turbines.

The journal of ‘Renewable Energy’ has just published a study using the model, which predicts hit-rates for silver eels at Strangford Loch near Belfast and shows how the technique can be used in the real world.

A haven for wildlife with over 2,000 species recorded, Strangford Loch is one of the highest ranking locations for marine biodiversity in Europe and a migration route for over 15,000 adult European Eels (silver eels). It is also a tidal hotspot and was the site of the world’s first commercial-scale marine turbine project, SeaGen.

Installed as a pilot project between 2008 and 2019, SeaGen worked like an underwater windmill generating electricity for up to 1,500 homes in Northern Ireland. The combination of these factors made it the ideal location to test the new model.

Dr Tom Benson, project manager at HR Wallingford, said: “Our study looked at the collision rates for silver eels swimming through Strangford Loch as they migrate from the river to the sea. There is plenty of evidence to show that eels swim near the surface at night and deeper in the daytime. Using this information, we were able to demonstrate that just 1.1% of silver eels would have collided with the SeaGen turbines, significantly lower than predictions using older methods. In the future, we also hope to include the effect of fish actively avoiding turbine blades.”

The tidal power industry is in its infancy and the UK is ideally placed to lead the way given its renewables know-how and the wealth of potential around the British Isles. According to the UK Government, wave and tidal power has the potential to meet up to 20% of the UK’s current electricity demand. And with growing concerns about the effect of turbines on marine wildlife, accurate collision rate modelling will be key to getting the fledgling sector up and running.

The fish modelling project is funded by HR Wallingford’s own research programme, which invests the organisation’s profits to find leading-edge solutions to water-related challenges. The research builds on previous HR Wallingford work showing how fish react to underwater acoustics (noise) caused by human activity.